Geothermal Heat Pump

Geothermal Heat Pump Installation in Randolph, Weymouth, Brockton & Nearby

Geothermal heat pumps (sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps) have been in use since the late 1940s. Geothermal heat pumps (GHPs) use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300%-600%) on the coldest of winter nights, compared to 175%-250% for air-source heat pumps on cool days.

While many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—a few feet below the earth's surface the ground remains at a relatively constant temperature. Depending on latitude, ground temperatures range from 45°F (7°C) to 75°F (21°C). Like a cave, this ground temperature is warmer than the air above it during the winter and cooler than the air in the summer. The GHP takes advantage of this by exchanging heat with the earth through a ground heat exchanger.

As with any heat pump, geothermal and water-source heat pumps are able to heat, cool, and, if so equipped, supply the house with hot water. Some models of geothermal systems are available with two-speed compressors and variable fans for more comfort and energy savings. Relative to air-source heat pumps, they are quieter, last longer, need little maintenance, and do not depend on the temperature of the outside air.

A dual-source heat pump combines an air-source heat pump with a geothermal heat pump. These appliances combine the best of both systems. Dual-source heat pumps have higher efficiency ratings than air-source units, but are not as efficient as geothermal units. The main advantage of dual-source systems is that they cost much less to install than a single geothermal unit, and work almost as well.

Even though the installation price of a geothermal system can be several times that of an air-source system of the same heating and cooling capacity, the additional costs are returned to you in energy savings in 5–10 years. System life is estimated at 25 years for the inside components and 50+ years for the ground loop. There are approximately 40,000 geothermal heat pumps installed in the United States each year.

Economics of Geothermal Heat Pumps

Geothermal heat pumps save money in operating and maintenance costs. While the initial purchase price of a residential GHP system is often higher than that of a comparable gas-fired furnace and central air-conditioning system, it is more efficient, thereby saving money every month. For further savings, GHPs equipped with a device called a "desuperheater" can heat the household water. In the summer cooling period, the heat that is taken from the house is used to heat the water for free. In the winter, water heating costs are reduced by about half.

On average, a geothermal heat pump system costs about $2,500 per ton of capacity, or roughly $7,500 for a 3-ton unit (a typical residential size). A system using horizontal ground loops will generally cost less than a system with vertical loops. In comparison, other systems would cost about $4,000 with air conditioning.

Although initially more expensive to install than conventional systems, properly sized and installed GHPs deliver more energy per unit consumed than conventional systems.

And since geothermal heat pumps are generally more efficient, they are less expensive to operate and maintain — typical annual energy savings range from 30% to 60%. Depending on factors such as climate, soil conditions, the system features you choose, and available financing and incentives, you may even recoup your initial investment in two to ten years through lower utility bills.

But when included in a mortgage, your GHP will have a positive cash flow from the beginning. For example, say that the extra $3,500 will add $30 per month to each mortgage payment. The energy cost savings will easily exceed that added mortgage amount over the course of each year.

On a retrofit, the GHP's high efficiency typically means much lower utility bills, allowing the investment to be recouped in two to ten years. It may also be possible to include the purchase of a GHP system in an "energy-efficient mortgage" that would cover this and other energy-saving improvements to the home. Banks and mortgage companies can provide more information on these loans.

There may be a number of special financing options and incentives available to help offset the cost of adding a geothermal heat pump (GHP) to your home. These provisions are available from federal, state, and local governments; power providers; and banks or mortgage companies that offer energy-efficient mortgage loans for energy-saving home improvements. Be sure the system you're interested in qualifies for available incentives before you make your final purchase.

To find out more about financing and incentives that are available to you, visit the Database of State Incentives for Renewable Energy (DSIRE) Web site. The site is frequently updated with the latest incentives. You should also check with your electric utility and ask if they offer any rebates, financing, or special electric rate programs.

Looking for a price? Get a no cost, no obligation free estimate.

our service area

We serve the following areas

Our Locations:

Green Energy Mechanical
517 N Main St
Randolph, MA 02368